3.1.42 \(\int \frac {\sinh ^3(c+d x)}{(a+b \text {sech}^2(c+d x))^3} \, dx\) [42]

3.1.42.1 Optimal result
3.1.42.2 Mathematica [C] (warning: unable to verify)
3.1.42.3 Rubi [A] (verified)
3.1.42.4 Maple [B] (verified)
3.1.42.5 Fricas [B] (verification not implemented)
3.1.42.6 Sympy [F(-1)]
3.1.42.7 Maxima [F(-2)]
3.1.42.8 Giac [F]
3.1.42.9 Mupad [F(-1)]

3.1.42.1 Optimal result

Integrand size = 23, antiderivative size = 154 \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\frac {5 \sqrt {b} (3 a+7 b) \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{8 a^{9/2} d}-\frac {(a+3 b) \cosh (c+d x)}{a^4 d}+\frac {\cosh ^3(c+d x)}{3 a^3 d}+\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 d \left (b+a \cosh ^2(c+d x)\right )^2}-\frac {b (9 a+13 b) \cosh (c+d x)}{8 a^4 d \left (b+a \cosh ^2(c+d x)\right )} \]

output
-(a+3*b)*cosh(d*x+c)/a^4/d+1/3*cosh(d*x+c)^3/a^3/d+1/4*b^2*(a+b)*cosh(d*x+ 
c)/a^4/d/(b+a*cosh(d*x+c)^2)^2-1/8*b*(9*a+13*b)*cosh(d*x+c)/a^4/d/(b+a*cos 
h(d*x+c)^2)+5/8*(3*a+7*b)*arctan(cosh(d*x+c)*a^(1/2)/b^(1/2))*b^(1/2)/a^(9 
/2)/d
 
3.1.42.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 13.81 (sec) , antiderivative size = 1364, normalized size of antiderivative = 8.86 \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx =\text {Too large to display} \]

input
Integrate[Sinh[c + d*x]^3/(a + b*Sech[c + d*x]^2)^3,x]
 
output
(-3*((3*(ArcTan[(Sqrt[a] - I*Sqrt[a + b]*Tanh[(c + d*x)/2])/Sqrt[b]] + Arc 
Tan[(Sqrt[a] + I*Sqrt[a + b]*Tanh[(c + d*x)/2])/Sqrt[b]]))/Sqrt[a] + (2*Sq 
rt[b]*Cosh[c + d*x]*(3*a + 10*b + 3*a*Cosh[2*(c + d*x)]))/(a + 2*b + a*Cos 
h[2*(c + d*x)])^2)*(a + 2*b + a*Cosh[2*c + 2*d*x])^3*Sech[c + d*x]^6)/(819 
2*b^(5/2)*d*(a + b*Sech[c + d*x]^2)^3) - ((-((3*a - 4*b)*(ArcTan[((Sqrt[a] 
 - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh 
[c]*(Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/S 
qrt[b]] + ArcTan[((Sqrt[a] + I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Si 
nh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] + I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sin 
h[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]])) - (2*Sqrt[a]*Sqrt[b]*Cosh[c + d*x]*(3* 
a^2 + 6*a*b + 8*b^2 + a*(3*a - 4*b)*Cosh[2*(c + d*x)]))/(a + 2*b + a*Cosh[ 
2*(c + d*x)])^2)*(a + 2*b + a*Cosh[2*c + 2*d*x])^3*Sech[c + d*x]^6)/(2048* 
a^(3/2)*b^(5/2)*d*(a + b*Sech[c + d*x]^2)^3) + ((3*(3*a^4 - 40*a^3*b + 720 
*a^2*b^2 + 6720*a*b^3 + 8960*b^4)*ArcTan[((Sqrt[a] - I*Sqrt[a + b]*Sqrt[(C 
osh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] - I*Sqrt[a 
+ b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]] + 3*(3*a^4 - 40* 
a^3*b + 720*a^2*b^2 + 6720*a*b^3 + 8960*b^4)*ArcTan[((Sqrt[a] + I*Sqrt[a + 
 b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] 
+ I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]] + (2* 
Sqrt[a]*Sqrt[b]*Cosh[c + d*x]*(9*a^5 - 90*a^4*b - 10144*a^3*b^2 - 48672...
 
3.1.42.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.99, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 26, 4621, 360, 25, 2345, 1467, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \sin (i c+i d x)^3}{\left (a+b \sec (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\sin (i c+i d x)^3}{\left (b \sec (i c+i d x)^2+a\right )^3}dx\)

\(\Big \downarrow \) 4621

\(\displaystyle -\frac {\int \frac {\cosh ^6(c+d x) \left (1-\cosh ^2(c+d x)\right )}{\left (a \cosh ^2(c+d x)+b\right )^3}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 360

\(\displaystyle -\frac {-\frac {\int -\frac {-4 a^3 \cosh ^6(c+d x)+4 a^2 (a+b) \cosh ^4(c+d x)-4 a b (a+b) \cosh ^2(c+d x)+b^2 (a+b)}{\left (a \cosh ^2(c+d x)+b\right )^2}d\cosh (c+d x)}{4 a^4}-\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {-4 a^3 \cosh ^6(c+d x)+4 a^2 (a+b) \cosh ^4(c+d x)-4 a b (a+b) \cosh ^2(c+d x)+b^2 (a+b)}{\left (a \cosh ^2(c+d x)+b\right )^2}d\cosh (c+d x)}{4 a^4}-\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 2345

\(\displaystyle -\frac {\frac {\frac {b (9 a+13 b) \cosh (c+d x)}{2 \left (a \cosh ^2(c+d x)+b\right )}-\frac {\int \frac {8 a^2 b \cosh ^4(c+d x)-8 a b (a+2 b) \cosh ^2(c+d x)+b^2 (7 a+11 b)}{a \cosh ^2(c+d x)+b}d\cosh (c+d x)}{2 b}}{4 a^4}-\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 1467

\(\displaystyle -\frac {\frac {\frac {b (9 a+13 b) \cosh (c+d x)}{2 \left (a \cosh ^2(c+d x)+b\right )}-\frac {\int \left (8 a b \cosh ^2(c+d x)-8 b (a+3 b)+\frac {5 \left (7 b^3+3 a b^2\right )}{a \cosh ^2(c+d x)+b}\right )d\cosh (c+d x)}{2 b}}{4 a^4}-\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {\frac {b (9 a+13 b) \cosh (c+d x)}{2 \left (a \cosh ^2(c+d x)+b\right )}-\frac {\frac {5 b^{3/2} (3 a+7 b) \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{\sqrt {a}}+\frac {8}{3} a b \cosh ^3(c+d x)-8 b (a+3 b) \cosh (c+d x)}{2 b}}{4 a^4}-\frac {b^2 (a+b) \cosh (c+d x)}{4 a^4 \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

input
Int[Sinh[c + d*x]^3/(a + b*Sech[c + d*x]^2)^3,x]
 
output
-((-1/4*(b^2*(a + b)*Cosh[c + d*x])/(a^4*(b + a*Cosh[c + d*x]^2)^2) + ((b* 
(9*a + 13*b)*Cosh[c + d*x])/(2*(b + a*Cosh[c + d*x]^2)) - ((5*b^(3/2)*(3*a 
 + 7*b)*ArcTan[(Sqrt[a]*Cosh[c + d*x])/Sqrt[b]])/Sqrt[a] - 8*b*(a + 3*b)*C 
osh[c + d*x] + (8*a*b*Cosh[c + d*x]^3)/3)/(2*b))/(4*a^4))/d)
 

3.1.42.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 360
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] : 
> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p 
+ 1))), x] + Simp[1/(2*b^(m/2 + 1)*(p + 1))   Int[(a + b*x^2)^(p + 1)*Expan 
dToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 
- 1)*(b*c - a*d))/(a + b*x^2)] - (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; 
FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[m/2, 0] & 
& (IntegerQ[p] || EqQ[m + 2*p + 1, 0])
 

rule 1467
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), 
 x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], 
x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e 
 + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2345
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuot 
ient[Pq, a + b*x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 
 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b 
*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*(p + 1))   In 
t[(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] 
/; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4621
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff*x)^n)^p/(ff*x)^(n*p)), 
x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/ 
2] && IntegerQ[n] && IntegerQ[p]
 
3.1.42.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(347\) vs. \(2(138)=276\).

Time = 0.21 (sec) , antiderivative size = 348, normalized size of antiderivative = 2.26

\[\frac {\frac {1}{3 a^{3} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {1}{2 a^{3} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {a +6 b}{2 a^{4} \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-\frac {1}{3 a^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{2 a^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-a -6 b}{2 a^{4} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {2 b \left (\frac {\left (-\frac {9}{8} a^{2}+\frac {1}{4} a b +\frac {11}{8} b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-\frac {\left (27 a^{3}+15 a^{2} b +5 a \,b^{2}+33 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{8 \left (a +b \right )}+\left (-\frac {27}{8} a^{2}-\frac {5}{4} a b +\frac {33}{8} b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {9 a^{2}}{8}-\frac {5 a b}{2}-\frac {11 b^{2}}{8}}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{2}}+\frac {5 \left (3 a +7 b \right ) \arctan \left (\frac {2 \left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 a -2 b}{4 \sqrt {a b}}\right )}{16 \sqrt {a b}}\right )}{a^{4}}}{d}\]

input
int(sinh(d*x+c)^3/(a+b*sech(d*x+c)^2)^3,x)
 
output
1/d*(1/3/a^3/(1+tanh(1/2*d*x+1/2*c))^3-1/2/a^3/(1+tanh(1/2*d*x+1/2*c))^2-1 
/2*(a+6*b)/a^4/(1+tanh(1/2*d*x+1/2*c))-1/3/a^3/(tanh(1/2*d*x+1/2*c)-1)^3-1 
/2/a^3/(tanh(1/2*d*x+1/2*c)-1)^2-1/2/a^4*(-a-6*b)/(tanh(1/2*d*x+1/2*c)-1)+ 
2*b/a^4*(((-9/8*a^2+1/4*a*b+11/8*b^2)*tanh(1/2*d*x+1/2*c)^6-1/8*(27*a^3+15 
*a^2*b+5*a*b^2+33*b^3)/(a+b)*tanh(1/2*d*x+1/2*c)^4+(-27/8*a^2-5/4*a*b+33/8 
*b^2)*tanh(1/2*d*x+1/2*c)^2-9/8*a^2-5/2*a*b-11/8*b^2)/(tanh(1/2*d*x+1/2*c) 
^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d*x+1/2* 
c)^2*b+a+b)^2+5/16*(3*a+7*b)/(a*b)^(1/2)*arctan(1/4*(2*(a+b)*tanh(1/2*d*x+ 
1/2*c)^2+2*a-2*b)/(a*b)^(1/2))))
 
3.1.42.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4793 vs. \(2 (138) = 276\).

Time = 0.35 (sec) , antiderivative size = 8667, normalized size of antiderivative = 56.28 \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Too large to display} \]

input
integrate(sinh(d*x+c)^3/(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.1.42.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Timed out} \]

input
integrate(sinh(d*x+c)**3/(a+b*sech(d*x+c)**2)**3,x)
 
output
Timed out
 
3.1.42.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(sinh(d*x+c)^3/(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.1.42.8 Giac [F]

\[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int { \frac {\sinh \left (d x + c\right )^{3}}{{\left (b \operatorname {sech}\left (d x + c\right )^{2} + a\right )}^{3}} \,d x } \]

input
integrate(sinh(d*x+c)^3/(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 
output
sage0*x
 
3.1.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^3(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^6\,{\mathrm {sinh}\left (c+d\,x\right )}^3}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^3} \,d x \]

input
int(sinh(c + d*x)^3/(a + b/cosh(c + d*x)^2)^3,x)
 
output
int((cosh(c + d*x)^6*sinh(c + d*x)^3)/(b + a*cosh(c + d*x)^2)^3, x)